报告人:叶澍阳 (柏林洪堡大学)
主持人:谢兵永
报告时间:10月23日 15:00-16:00
报告地点: 数学楼 126
报告摘要:In this talk, I will first recall the notion of (phi,nabla)-modules over the Robba ring (i.e. finite free differential modules over the Robba ring with a Frobenius structure). I will then explain the p-adic local monodromy theorem, proven independently by Y. Andre, K. Kedlaya and Z. Mebkhout in 2000s, which states that every (phi,nabla)-module over the Robba ring is quasi-unipotent. Furthermore, I will consider G-versions of the above construction and theorem, where G denotes a connected reductive algebraic group over some local field.