A magnetic Schr\"{o}dinger equation with exponential critical growth in $\mathbb{R}^{2}$
发布人: 曹思圆   发布时间: 2020-10-14   浏览次数: 26

*主讲人:姬超 副教授(华东理工大学)

*主持人:叶东 教授            

*时间:2020年10月23日13:00-14:00

*地点:数学楼102 报告厅


*讲座内容简介:

In this thalk, we are concerned with the following nonlinear Schr\{o}dinger equation with magnetic field

\begin{align*}

\Big(\frac{\varepsilon}{i}\nabla-A(x)\Big)^{2}u+V(x)u=f(|u|^{2})u,\quad x\in\mathbb{R}^{2},

\end{align*}

where $\varepsilon>0$ is a parameter, $V:\mathbb{R}^{2}\rightarrow \mathbb{R}$ and $A: \mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$ are continuous

potentials and $f:\mathbb{R}\rightarrow \mathbb{R}$ has exponential critical growth. Under a local assumption on the potential $V$,  by variational methods, penalization technique, and Ljusternick-Schnirelmann theory, we show multiplicity and concentration of solutions for $\varepsilon$ small. This is a joint work with professor Pietro d'Avenia.



*主讲人简介:

姬超,华东理工大学副教授,2009年博士毕业于兰州大学, 导师范先令教授。研究兴趣主要有对数薛定谔方程,带磁场的非线性薛定谔方程和具变指数增长的非线性椭圆方程等。先后主持两项国家自然科学基金和两项上海市自然科学基金,以及一项中国博士后基金等。迄今已在包括 International Mathematics Research Notices, Calculus of Variations and Partial Differential Equations, Journal of the London Mathematical Society等刊物上发表SCI论文35篇。