Pattern Avoidance of Generalized Permutations
发布人: 曹思圆   发布时间: 2019-01-07   浏览次数: 10

报告人: 王岁杰

时间:2019年1月9日(星期三)上午10:00-11:00 

地点: 闵行数学楼402报告厅

邀请人: 杜若霞


摘要: Recently, we studied pattern avoidances of generalized permutations and showed that the number of all generalized permutations avoiding π is independent of the choice of π∈S_3, which extends the classic results on permutations avoiding π∈S_3. Extending both Dyck path and Riordan path, we introduce the Catalan-Riordan path which turns out to be a combinatorial interpretation of the difference array of Catalan numbers. As applications, we interpret both Motzkin and Riordan numbers in two ways, via semistandard Young tableaux of two rows and generalized permutations avoiding π∈S_3. Analogous to Lewis's method, we establish a bijection from generalized permutations to rectangular semistandard Young tableaux which will recover several known results in the literature.  (This is a joint work with Dr. Zhousheng Mei)


报告人简介:王岁杰本科就读于武汉大学, 硕士毕业于北京大学, 2010年在香港科技大学取得博士学位,其后在台湾中央研究院从事博士后研究,于2013年加入湖南大学,现为湖南大学数学院副教授。 研究领域涉及杨表相关的组合计数问题, 超平面配置,拟阵与图论等,相关科研工作发表于组合数学顶级期刊JCTA, JCTB等杂志。