Cohen-Macaulay differential graded modules and negative Calabi-Yau configurations.
发布人: 曹思圆   发布时间: 2019-03-04   浏览次数: 24

报告人:晋海波博士(日本名古屋大学)

时间: 2019年2月15号上午10:00-11:30

地点:数学楼126室


Abstract:  

In this talk, we introduce the class of Cohen-Macaulay (=CM) dg (=differential graded) modules over Gorenstein dg algebras and study their basic properties. We show that the category of CM dg modules forms a Frobenius extriangulated category, in the sense of Nakaoka and Palu, and it admits almost split extensions.

 We also study representation-finite d-self-injective dg algebras A in detail. In particular, we classify the Auslander-Reiten (=AR) quivers of CM A for those A in terms of (-d - 1)-Calabi-Yau (=CY) configurations, which are Riedtmann’s configuration for the case d = 0. In type A, for any given (-d-1)-CY configuration C, using a bijection between (-d-1)-CY configurations and certain purely combinatorial objects which we call maximal d-Brauer relations given by Coelho Simoes, we construct a Brauer tree dg algebra A such that the AR quiver of CMA is given by C.


报告人简介:晋海波2012年本科毕业于华东理工大学,2016年硕士毕业于华东师范大学,现在日本名古屋大学攻读博士学位,导师是2018年国际数学家大会45分钟报告人、日本名古屋大学教授Osamu Iyama