Kazhdan-Lusztig theory of matroids
发布人: 曹思圆   发布时间: 2018-06-08   浏览次数: 10
主讲人:  Wang Botong (University of Wisconsin-Madison  Assistant Professor)

邀请人: 杜荣
时间:2018年6月15日(周五)下午 1:30-2:30

  Matroids are combinatorial generalizations of configuration of points in vector spaces, or equivalently, hyperplane arrangements. I will discuss two conjectures in matroid theory. The first is a “top-heavy” conjecture by Dowling and Wilson in the 70’s, and the second is some non-negativity conjecture about the Kazhdan-Lusztig polynomial of matroids introduced recently by Elias-Proudfoot-Wakefield. I will explain the proofs of the conjectures in the realizable case (the first conjecture by Huh and myself, and the second by E-P-W). The proof uses Hodge theory of the matroid analogous of the Schubert varieties. I will also talk about some work in progress of extending the proof to the non-realizable case, which is joint with Tom Braden, June Huh, Jacob Matherne and Nick Proudfoot.

  B.S, Peking University, 2002-2006
  Ph.D, Purdue University, 2006-2012
  Visiting Assistant Professor, University of Notre Dame, 2012-2015
  Postdoc, KU Leuven, Fall 2015
  Visiting Assistant Professor, University of Wisconsin - Madison, 2016-2017
  Assistant Professor, University of Wisconsin - Madison, 2017-now

在世界著名杂志 Acta Math.、Ann. Sci. Ecole Norm. Sup.、Compos. Math.、Math. Ann.、Adv. Math.、Geometry and Topology、Int. Math. Res. Not.等杂志上发表过文章