Equivariant Minimal Model Program with a View Towards Algebraic and Arithmetic Dynamics
发布人: 曹思圆   发布时间: 2019-06-21   浏览次数: 10

主讲人:Prof. De-Qi Zhang (新加坡国立大学)

主持人:谈胜利 教授

开始时间:2019-6-21(周五)  13:30-14:30  


主办单位:数学科学学院 科技处


De-Qi Zhang,新加坡国立大学数学系教授。华东师范大学学士, Osaka大学博士; Osaka大学助理教授;  1991年-至今: 新加坡国立大学 讲师, 高级讲师, 副教授; 教授.

荣誉:1) Yukawa Foundation award (1989)  2) Outstanding Scientist Award 2009, Science Faculty, NUS  3) Outstanding Mentor Award, October 2009, 15th Youth Science Conference, Singapore  4) One of Final Four shortlisted for President’s Science Award, yr 2010, Singapore.


We will will elaborate the notion of ‘int-amplified’ endomorphism f of a normal projective variety X, a property weaker than ‘polarized’ yet preserved by products. We will show that the existence of such a single f guarantees that every Minimal Model Program (MMP) is equivariant w.r.t. a finite-index submonoid of the whole monoid SEnd(X) of all surjective endomorphisms of X. Applications of the equivariant MMP are discussed: Kawaguchi-Silverman conjecture on the equivalence of arithmetic and dynamic degrees of an endomorphism, and characterization of a subvariety with Zariski dense periodic points. Some parts are based on joint work with Meng.